



# DAWN<sup>TM</sup> Trial Update – SVIN October 26, 2013

- Tudor G. Jovin, MD

**Stroke:** Our Only Focus. Our Ongoing Promise.

#### Disclosures



- Silk Road Medical Consultant
- Stryker NV DAWN<sup>™</sup> Trial Co-PI

# Why DAWN<sup>™</sup> Trial? Why Now?



- To Expand the indication of TREVO 2 embolectomy device beyond 8 hrs in appropriately selected patients
- To *Prove clinical efficacy* of mechanical embolectomy based on physiological data in a patient population with presumed poor natural history in whom there are currently no treatment options
- To Change guidelines evidence is needed from one (or more) positive RCTs





#### **DAWN**<sup>TM</sup> Trial Overview



# Study Design Overview



#### <u>D</u>WI or CTP <u>A</u>ssessment with Clinical Mismatch in the Triage of <u>W</u>ake-Up and Late Presenting Strokes Undergoing <u>N</u>eurointervention

Objective: To demonstrate superior *clinical outcomes* at 90 days with Trevo plus medical management compared to medical management alone in *appropriately selected* patients *treated 6-24 hours* after last seen well

<u>Design</u>: Prospective, randomized (1:1), multi-center, Phase II/III (feasibility/pivotal), adaptive, population enrichment, blinded endpoint, controlled trial

Sites: 50 sites (US & EU) maximum

Patients: 150 (feasibility) up to 500 (pivotal) max

Endpoint: Difference in <u>average weighted</u> mRS at 90 days between treatment & control in the <u>enriched</u> patient population

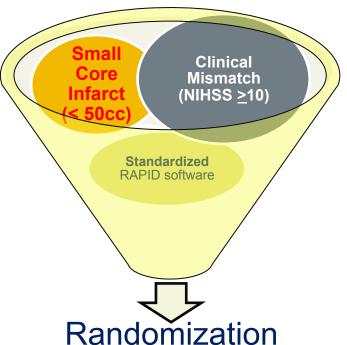
## **Unique Design Elements**



<u>Clinical Imaging Mismatch</u> - standardizes clinical imaging to select patients <u>Bayesian Adaptive Design</u> - uses data as it is collected to adjust predicted probability of success/failure at frequent interim analyses (Q 50 pts)

<u>Combined Feasibility/Pivotal</u> - increased efficiency; recalibrate decision to continue to pivotal phase based on real data/signal strength

<u>Weighted mRS Endpoint</u> - captures health state transitions across the entire spectrum (more sensitive measurement)


| mRS    | 0  | 1   | 2   | 3   | 4   | 5 | 6 |
|--------|----|-----|-----|-----|-----|---|---|
| Weight | 10 | 9.1 | 7.6 | 6.5 | 3.3 | 0 | 0 |

<u>Enrichment</u> – allows us to fine tune the patient population

Potential Sub groups (based on infarct size):  $0-50 \text{ cc} \rightarrow 0-45 \text{ cc} \rightarrow 0-40 \text{ cc} \rightarrow 0-35 \text{ cc} \rightarrow 0-30 \text{ cc}$ 

# Clinical Imaging Mismatch





Balanced re: Infarct size, time, and ICA vs M1

### Why Clinical Mismatch?



- Literature supports core infarct size being predictive of outcomes
- No gold standard to define salvageable brain tissue
- NIHSS assessment (clinical deficit) represents tissue at risk in real time, can be easily administered (and repeated) multiple times, and is validated in clinical practice

## Why RAPID?



- In clinical practice, the multi-modal imaging maps (settings/ thresholds) are used to "explore" underlying patho-physiology and determine a treatment plan for an individual patient.
- In an RCT it is essential to <u>standardize</u> these settings/thresholds across all sites/patients, to eliminate selection bias & ensure measured outcomes are a result of the "treatment" being tested.
  - Physician still needs to review result, and decide whether software is returning a legitimate/realistic value and make the final decision about enrolling a patient in a trial.

## Why Adaptive Design?



- Unknown Natural History = Unknown treatment effect
- Interim analyses allow us to "fine tune" or "enrich" the patient population (to eliminate patients not being helped/being harmed by treatment)
- Novel weighted mRS endpoint

#### **Clinical Evidence**



| CONTROL Arm Estimates*        |                  |         | Treatment Arm Estimates |                        |         |  |
|-------------------------------|------------------|---------|-------------------------|------------------------|---------|--|
| Study                         | ICA/M1           | mRS 0-2 | Study                   | ICA/M1 +               | mRS 0-2 |  |
| Germans<br>Trias<br>Barcelona | 6-24 hr          | 17.4%   | SWIFT                   | 0-8 hr<br>(all comers) | 37%     |  |
| STOP<br>Stroke**              | 0-8 hr           | 18.4%   | TREVO 2                 | 0-8 hr<br>(all comers) | 39.9%   |  |
| FIRST                         | 0-8 hr           | 20.4%   | Pre-DAWN                | 8-24 hr                | 40%     |  |
| PROACT II                     | 0-6 hr<br>(+ M2) | 25%     |                         |                        |         |  |

\*Late presenting patients presumed to have good collaterals and better outcomes \*\*Studies using imaging selection

Expected Treatment Effect = 10-15%

## Preliminary Data for the DAWN™ Trial



Imaging Based Endovacular Therapy for Proximal Anterior Circulation Occlusions >8 Hours from LSW in 237 Stroke Patients

A total of 169 patients from the original cohort met the following criteria:

- Baseline NIHSS score ≥10
- ICA or MCA-M1 occlusion +/-cervical occlusion
- TLSWT between 8-24 hours
- MRI or CTP Selection (vs. CT in PROACT-II)

Jovin TG, Nogueira RG et al., Stroke, 2011

| Age (years)           |               |  |  |
|-----------------------|---------------|--|--|
| Mean±SD               | 64±16         |  |  |
| Median                | 68            |  |  |
| Range                 | 19-91         |  |  |
| Baseline NIHSS Score  |               |  |  |
| Mean±SD               | 17±4          |  |  |
| Median                | 17            |  |  |
| Gender % (n)          |               |  |  |
| Male                  | 46% (78)      |  |  |
| Female                | 54% (91)      |  |  |
| TLSWT                 | , ,           |  |  |
| Mean±SD               | 12.6±3.7      |  |  |
| Median (IQR)          | 12 (9.5-14.4) |  |  |
| Site of Occlusion (%) |               |  |  |
| MCA-M1                | 54% (91/169)  |  |  |
| ICA-T                 | 22% (38/169)  |  |  |
| Tandem ICA/MCA        | 17% (26/169)  |  |  |
| Tandem ICA/ICA-T      | 7% (12/169)   |  |  |
| TIMI 2-3              | 74% (125/169) |  |  |
| Revascularization     |               |  |  |
| Symptomatic ICH       | 10% (17)      |  |  |
| 90-day mRS ≤2         | 40% (57/142)  |  |  |
| 90-day mRS ≤3         | 58% (82/142)  |  |  |
| 90-day Mortality      | 25% (42/167)  |  |  |

# Sample Size Estimates









#### **DAWN Trial TM Status**



#### Status



- Over 100 sites received questionnaire
- Site qualifications in process
- Site selection is based on multiple criteria
  - Case volume
  - Experience
  - Geography
  - Institutional variety
  - Research resources
  - Speed to start up
- Target for first enrollment: February 2014





### Thank you

