MR RESCUE: Primary Results

(Mechanical Retrieval and REcanalization of Stroke Clots

Using Embolectomy)

Funded by NIH-NINDS UCLA SPOTRIAS Grant: P50 NS044378 Clinical Trials.gov Number NCT00389467 FDA IDE Number: G050077

MR RESCUE Investigators

Additional Acknowledgements

• Data Safety and Monitoring Board

Colin Derdeyn, MD – Chair; Washington University, St. Louis, MI Kyra Becker, MD; University of Washington, Seattle, WA Scott Hamilton, MD; Stanford University, Palo Alto, CA Larry Brass, MD (deceased); Yale University, New Haven, CT

Medical Monitor

Gene Sung, MD; University of Southern California, Los Angeles, CA

• Catheter Angiography Core Laboratory

Reza Jahan, MD; David S. Liebeskind, MD

• Neuroimaging Core Laboratory

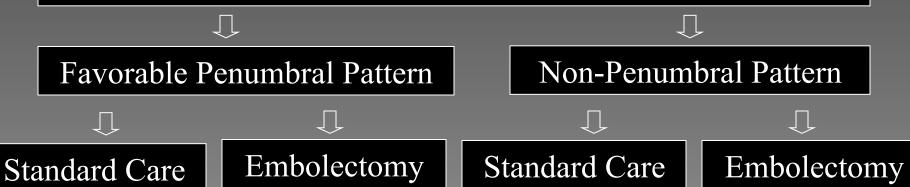
Chelsea S. Kidwell, MD; Jeffry R. Alger, PhD; Timothy J. Schaewe, DSc; James Norman; Laura Russell, BS; Reva Stidd, BA; Gina Norato, BS

• NIH/NINDS

Scott Janis, PhD – Program Officer

Claudia Moy, PhD - DSMB Liaison

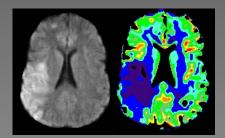
• Philips Healthcare (Cleveland, OH) provided the Advanced Brain Perfusion Software employed in the CT perfusion analyses


Study Design

<u>Multicenter, randomized, controlled, blinded outcome trial</u> <u>Target sample size = 120 patients</u>

Acute Stroke < 8 Hours Screened

Multimodal Images Acquired; Target ICA/MCA Occlusion Shown

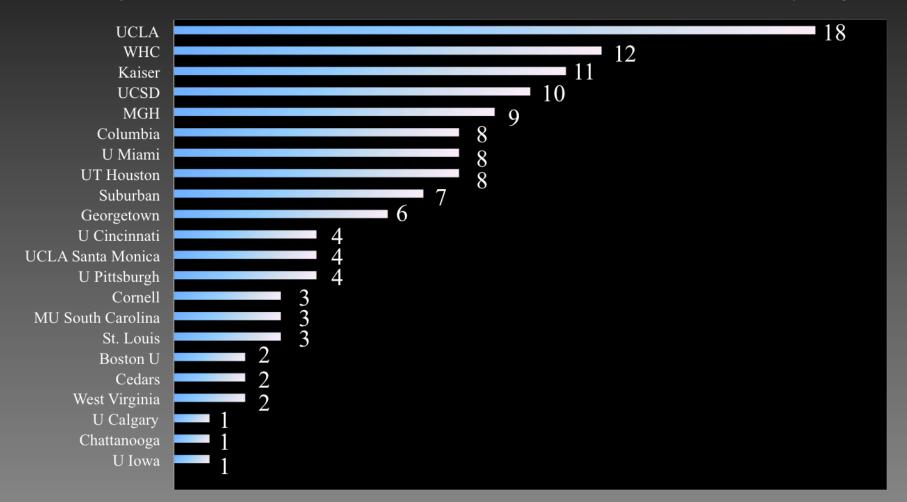

Randomization (stratified by pattern in real time using study specific software)

• Main goals

- Demonstrate that presence of substantial penumbral tissue predicts patients most likely to respond to mechanical embolectomy
- Demonstrate that embolectomy patients have improved functional outcome compared to randomized controls

Enrollment Criteria

Inclusion


- NIHSS ≥ 6
- Age $\ge 18 \le 85$
- Procedure initiated within 8 hrs from onset
- ICA, M1 or M2 MCA occlusion
- Premorbid mRS 0-2
- Allowed: IV tPA (if vessel imaging post-tPA infusion showed persistent target occlusion)

Exclusion

- NIHSS ≥ 30
- Acute intracranial hemorrhage
- Rapidly improving symptoms
- Pregnancy
- Refractor iodine allergy
- Proximal carotid stenosis > 67%, or dissection
- INR > 3.0 or PTT > 3 x normal
- Renal failure (Cr > 2.0 or GFR < 30)

Results

127 subjects were enrolled between 2004-2011; of these, 118 were fully eligible

Patient Characteristics

	Total Cohort
Age – yr	65.5 ± 14.6
Median NIHSS (IQR)	17 (13-21)
Time to enrollment – hr	5.5 ± 1.4
IV tPA administration – no. (%)	44 (37)
MRI imaging modality – no. (%)	94 (80)
Target occlusion site – no. (%)	
Internal Carotid Artery	20 (17)
M1 Middle Cerebral Artery	78 (66)
M2 Middle Cerebral Artery	20 (17)

<u>Safety and Embolectomy</u> <u>Outcomes</u>

	Safety
Mortality	21%
Symptomatic Hemorrhage	4%

	Revascularization (Embolectomy Arm)*	
TICI 2a-3– no. (%)	67%	
TICI 2b-3– no. (%)	27%	

*Mean time to groin puncture = 6.2 hrs

Primary Outcome Analyses

Primary Hypothesis: Test for Interaction between treatment assignment and penumbral pattern by shift analysis

	E/Pen n=34	S/Pen n=34	E/Non-Pen n=30	S/Non-Pen n=20	p value
Mean (95% CI) Day 90	3.9	3.4	4.0	4.4	0.14
mRS	(3.3-4.4)	(2.8-4.0)	(3.4-4.6)	(3.6-5.2)	

As such, the trial failed to demonstrate that penumbral imaging identifies patients who will differentially benefit from endovascular therapy for acute ischemic stroke

Primary Outcome Analyses

Nested Hypothesis 1: Test for treatment efficacy in Penumbral Patients

	E/Pen	S/Pen	p
	n=34	n=34	value
Mean (95% CI) Day 90	3.9	3.4	0.23
mRS	(3.3-4.4)	(2.8-4.0)	

Nested Hypothesis 2: Test for absence of treatment efficacy (equivalency) in Non-Penumbral Patients

	E/Non-Pen	S/Non-Pen	p
	n=30	n=20	value
Mean (95% CI) Day 90	4.0	4.4	0.38
mRS	(3.4-4.6)	(3.6-5.2)	

Nested Hypothesis 3: Test for treatment efficacy in Embolectomy vs. Standard Care Patients

	Embolectomy	Standard Care	p
	n=64	n=54	value
Mean (95% CI) Day 90	3.9	3.9	0.99
mRS	(3.5-4.3)	(3.4-4.4)	

Primary Analyses: Age Adjusted

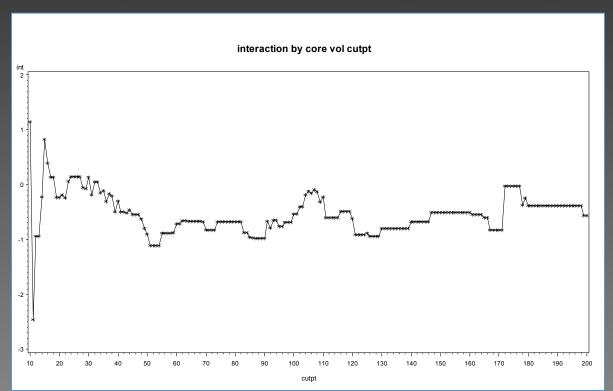
Primary Hypothesis: Test for Interaction between treatment assignment and penumbral pattern by shift analysis

	E/Pen n=34	S/Pen n=34	E/Non-Pen n=30	S/Non-Pen n=20	p value
Mean (95% CI) Day 90 mRS	3.8 (3.2-4.4)	3.4 (2.9-3.9)	4.3 (3.8-4.7)	4.2 (3.7-4.8)	0.30

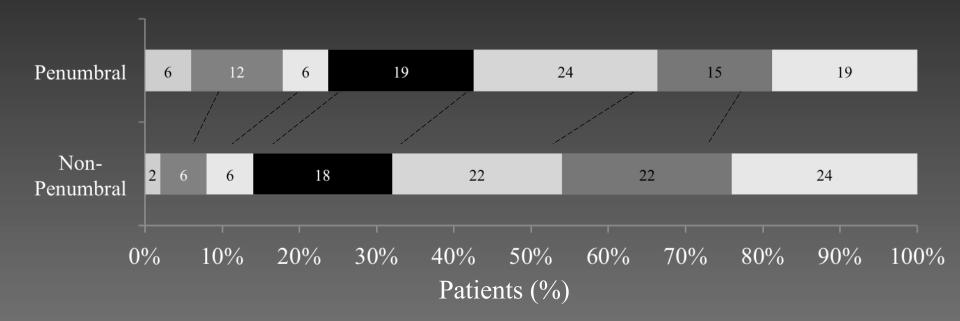
Nested Hypothesis 1: Test for treatment efficacy in Penumbral Patients

	E/Pen n=34	S/Pen n=34	p value
Mean (95% CI) Day 90 mRS	3.8 (3.2-4.4)	3.4 (2.9-3.9)	0.26

Nested Hypothesis 2: Test for absence of treatment efficacy (equivalency) in Non-Penumbral


	E/Non-Pen n=30	S/Non-Pen n=20	p value
Mean (95% CI) Day 90 mRS	4.3 (3.8-4.7)	4.2 (3.7-4.8)	0.85

Nested Hypothesis 3: Test for treatment efficacy in Embolectomy vs. Standard Care Patients


	Embolectomy n=64	Standard Care n=54	p value
Mean (95% CI) Day 90 mRS	4.0 (3.7-4.4)	3.8 (3.4-4.2)	0.36

Best Cutpoint Analysis

A receiver operator curve exploratory analysis failed to identify a threshold of predicted core volume that would have yielded a significant difference in outcomes based on treatment assignment and favorable penumbral pattern.

Day 90 mRS by Imaging Pattern

p=0.01

Trial Limitations

- Long duration for study recruitment (8 years)
- Inclusion of only first generation devices
 - Modest recanalization rates
- Baseline imaging: single snapshot in time
- Relatively late time to enrollment (whole cohort) and time to groin puncture (for the embolectomy arm)

<u>Conclusions</u>

- MR RESCUE failed to confirm the primary hypothesis of penumbral imaging selection of patients for endovascular therapy for acute ischemic stroke
- MR RESCUE failed to support the hypotheses of
 - Treatment efficacy in favorable penumbral pattern patients
 - Equivalency in non-penumbral pattern patients
 - Efficacy of embolectomy vs. standard care

Conclusions

- Possible reasons for neutral results include
 - Low recanalization rates with 1st generation devices
 - Introduction of two imaging modalities, which may differ in penumbral prediction
 - Potential for favorable outcomes in penumbral patients regardless of treatment (due to collateral support until spontaneous recanalization)
 - Flawed penumbral imaging selection hypothesis (as currently conceived)

<u>Implications and Future</u> <u>Directions</u>

- MR RESCUE underscores importance of confirming hypotheses in randomized, controlled trials prior to implementing treatment approaches in clinical practice
- Further randomized, controlled trials with new generation devices are needed
 - To test the full spectrum of the penumbral imaging selection hypothesis
 - To test clinical efficacy of new generation stentretriever devices