Early Clinical Experience with 5 MAX ACE-A New Clot Extraction Device

Sophia Janjua, Jeffrey Farkas, Karthekiyan Arcot, Rajesh Kumar, Jean Delbrune, Nikolaos Papamitsakis, Yevgeny Margulis, Kenneth A. Levin, Salman Azhar

Interventional Neurology Associates/

Lutheran Medical Center

SVIN 6th Annual Meeting

Houston, TX

October 26, 2013

Disclosures

- Sponsored breakfast symposium
- No independent fees
- Data independently reviewed by presenter (not by sponsor)

Timeline of Interventional Stroke Treatment

RECAN RATES WITH VARIOUS DEVICES

- LIAT
- Merci
- Penumbra
- Trevo
- Solitaire FR

- Pro-UK ~60%
- Merci registries~69-70%
- Pen. pivotal trial~82%
- Trevo~78% (TICI 2B)
- SWIFT~61%

Recanalization in IMS 3

BY OCCLUSION SITE

 	38%
ICA	3×%
	JU/ 0

- M1 44%
- M2 44%
- Mult M2 23%

BY DEVICE

- MicroSonic SV+IA 71%
- Merci 73%
- Penumbra 85%
- Solitaire FR 75%

Problems with early generation devices

- Device fractures
- Downstream emboli
- poor navigability of guide catheters and/or microcatheters
 - Bulky balloon guide with Merci
 - Stiff 1st generation Penumbra catheters

- Intravenous TPA 1995
- Intra-arterial 1999
- Merci Retriever 2004
- Penumbra Aspiration 2008
- Solitaire 2012
- Trevo 2012
- Penumbra 3D

Advances in Stroke Therapy

Balloon

Myocardial infarction,

 Angioplasty in part achieves recanalization in coronary vessels through controlled cracking and dissection of underlying atherosclerotic lesions on which supervening thrombus has developed.

Brain different.

- Occlusions are often embolic in origin,
- Vessels are often normal without underlying Calcfiled atheroma.
- Spongy cerebral clots often bounce back into the occlusive position after balloon angioplasty.

Clot Retrievers

- Hope to reduce or eliminate the need for thrombolytics
- Reduce hemorrhage rates so treatment can be extended
- Faster recanalization than thrombolytics

Aspiration System

Reperfusion Catheter 041

Reperfusion

Catheter 026

Mean time to recan

Check data from all existing trials

Evolution of Penumbra catheter systems

• .026	5 032	041	2008
.02	, <u></u>	,	2000

OF A	201	
.054	2010	U

 MAX sy 	vstem	2011
	,	

• MAX ACE 2013

ACE Design

0.060"/0.068" Tapered Lumen

- Highest suction force to capture and extract clot
- ▶ 12 Transition Zones
 - ▶ Effective force transmission
 - Kink resistance

Lutheran technique

- Coaxial system,
- 6 Fr sheath, 5 Fr diag. exchange for Neuron Max 088 (difficulty directly advancing neuron max through the access site over select cath)
- 5 Max ACE, Velocity, 14 wire
- Can fit 5 Max Sep. or Sep 3D through it

Access Setup

- Track ACE over Velocity or 3MAX
 - Velocity: Low Profile, 160 cm, compatible with stent retrievers
 - 3MAX : Best fitting catheter

Hooved apparneuver

Thrombus in toto aspirated through pump tubing

INA 5 MAX ACE comparative analysis

- Consecutive analogysis of acute stroke patients divided in two groups: ACE (5 MAX ACE first device used) vs NON-ACE (other device used first)
- Demographics, clinical, radiographical, procedural data collected and compared using t-test/chi square analysis

Baseline Data

GROUP	AGE (years)	GENDER	INITIAL NIHSSS	PRE-Tx TICI	VESSEL
ACE (n=15)	75+/-13	M=7, F=8	15+/-7	0=13 1=1 2B=1	ICA=2 M1=9 M2-1 BA=3
NON ACE (n=23)	76+/-12	M=4, F=8*	19+/-7**	0=19 1=3 (missing= 1)	ICA=4 M1=10 M2=7 BA=2
Initial device used for NON-ACE***					
3 MAX	4 MAX	5 MAX	Sep 3D	Trevo	Solitaire
2	1	4	1	2	1

missing data, n=11 missing data, n=14

missing data, n=5

Procedural Outcomes

GROUP	Mean time to recan*	Post-treatment TICI**
ACE	45+/- 24 min	TICI 2A, n=1 TICI 2B, n=4 TICI 3, n=10
NON-ACE***	105+/-55 min	TICI 0, n=1 TICI 1, n=2 TICI 2A, n=3 TICI 2B, n=6 TICI 3=5

```
* p=0.007

** p=0.031

*** missing data, 6
```

Mean time (minutes) to recanalization from groin puncture

Time Outliers

Pt	Recan time (minutes)	Age (years)	Lesion location
6*	82	60	ВА
8*	70	70	ICA (IC+EC)
9	58	82	M1
13	51	92	M1
14**	101	91	M1/carotid stenosis
15***	50	85	ВА

```
    Need for PTA/stent adjunctive therapy, n=2
    Device problem (crimped catheter), n=1
    Additional diagnostic angiography prior to intervention of target vessel, n=1
```

Tortuous/other factors, n=3

Mean time (minutes) to recanalization from groin puncture

Need for rescue device

Clinical Outcomes

GROUP	D/C NIHSSS*	ICH**	D/C mRS	30-90 DAY mRS
ACE	4+/-6	0	1, n=3 2, n=1 3, n=1 4, n=5 6, n=1 (missing, n=4)	0, n=2 1, n=1 4, n=2 5, n=1 6, n=2 (missing, n=7)
NON-ACE	10 +/-8	4 (17%)	0, n=1 1, n=1 4, n=3 5, n=2 6, n=5	3, n=2 4, n=1 6, n=1 (missing 19)

^{*} p=0.017 for change in NIHSSS (-11+/-5 points vs -8 +/-10 points ** p=0.035

ACE group individual outcomes

		30-90 DAY mRS
1	2	0
2	4	4
3	3	
4	1	
5	1	0
6	4	
7	4	
8		
9	4	6
10	4	5
11		4
12	1	
13	6	6
14		
15	(recent)	

Mortality in ACE patients

- Concommitant aortic stenosis, 1 withdrawal of care
- Death at 3 months due to medical condition

Conclusions

- 5 MAX ACE achieves efficient recanalization (in shorter times and higher degrees of reperfusion)
- Atraumatic
- Continued improvements in all aspects of stroke patient triage and interventional procedure may further shorten times to recanalization
- Other factors minimizing stroke related morbidity must still be addressed