Comprehensive Stroke Centers: Key Personnel and Infrastructure

Mark J. Alberts, MD
Professor of Neurology
Vice-Chair, Clinical Affairs
Department of Neurology and Neurotherapeutics
UTSW Medical Center
Dallas, TX

Levels and Types of Stroke Centers

1. Comprehensive Stroke Center
2. Primary Stroke Center
3. Acute Stroke Ready Hospital

Characteristics of Different Stroke Centers

- **Comprehensive Stroke Center**
 - Academic Medical Center
 - Tertiary Care facility
 - Wide range of hospitals; standard stroke care; stroke unit; use TPA

- **Primary Stroke Center**

- **Acute Stroke Ready Hospital**
 - Rural hospitals; basic care; drip and ship; use tele-technologies

Numbers of Various Types of Stroke Centers

- **Comprehensive Stroke Center**
 - 75 to 200 total

- **Primary Stroke Center**
 - Final count 1000-1200

- **Acute Stroke Ready Hospital**
 - Perhaps 1200-1800

> 5000 total acute care hospitals in the U.S.

Patient Types at a Comprehensive Stroke Center

- **Large complex ischemic strokes**
 - Endovascular therapy
 - Hemispherectomy
 - Systemic disease with multi-organ involvement
 - High ICP
 - Cryptogenic etiology

- **Intracerebral hemorrhage**
 - ICU level care
 - Neurosurgical interventions

- **Subarachnoid hemorrhage**
 - ICU level care
 - Endovascular and neurosurgical therapies
 - Vasospasm treatments

Presenter Disclosure Information

FINANCIAL DISCLOSURE:
Speakers Bureau/Consultant: Genentech, Inc.

UNLABELED/UNAPPROVED USES DISCLOSURE:
None
Key Elements of a Comprehensive Stroke Center

- All components of a Primary Stroke Center, **plus**
 - Availability of advanced imaging techniques
 - MRI/MRA, CTA, DSA, TCD
 - Availability of personnel trained in vascular neurology, neurosurgery, endovascular techniques
 - 24/7 availability of personnel, OR, and endovascular facilities
 - ICU/Neuroscience ICU
 - Stroke registry
 - Experience and expertise treating patients with large strokes, ICH, SAH

DSA = digital subtraction angiography; TCD = transcranial Doppler.

Imaging Modalities at a CSC

- MRI and MRA (head and neck)
 - Very sensitive to image acute strokes and cerebral vasculature
 - Can also be used for perfusion studies and to identify areas of mismatch
- CT Angiography (head and neck)
 - Useful to cerebral vasculature for detection of stenosis, aneurysms, dissection
 - Needed in patients who cannot undergo MRI and MRA
- CT or MR perfusion
 - Being used widely to help identify ischemic penumbra
- Cerebral Angiogram (DSA)
 - Often considered the ‘Gold Standard’
- MRI, along with MRA or CTA are now recommended for PSCs
CT Perfusion in Stroke

Key Personnel at a CSC
- CSC Director—most likely an MD with advanced training in vascular neurology or neurosurgery, others
- Neurosurgeon(s) with training in vascular neurosurgery
- Endovascular expertise for lytic/mechanical therapy, coiling, stenting, etc.
- Intensivist/Neuro-intensivist for ICU staffing
- Nursing personnel for stroke unit, ICU/NICU, endovascular, OR, etc.
- Advanced practice nurses for stroke registry, education, referrals, possible NICU coverage
- Therapists and pharmacists—patient care and research studies

Telemedicine at a CSC
- Most CSCs will have some type of telemedicine arrangement
 - Telephone consults
 - Full video conferencing with radiology feeds
 - Remote robotic interactions
- Link CSC to PSCs and ASRHs in their network
- Pre-arranged consultations and transfers
 - Specify vendors, logistical issues, platforms, reimbursement, legal issues
 - Decide who to transfer and how to transfer
- The CSC should act as a resource for various referring hospitals
 - Consultations, education, support, etc.

Administering TPA via Telephone at a CSC
53 patients Rx via phone; 73 in-house

Telemedicine for Stroke

<table>
<thead>
<tr>
<th></th>
<th>RVE</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>77</td>
<td>74</td>
</tr>
<tr>
<td>Time for consul. (min)</td>
<td>49.8</td>
<td>27.2</td>
</tr>
<tr>
<td>Length of stay, days</td>
<td>11.4</td>
<td>12.3</td>
</tr>
<tr>
<td>Admission to stroke ward, % of pts.</td>
<td>59.7</td>
<td>45.9</td>
</tr>
<tr>
<td>Transfer to stroke center, % of pts.</td>
<td>9.1</td>
<td>14.9</td>
</tr>
<tr>
<td>Diagnosis corrected, % of pts.</td>
<td>7.1</td>
<td>17.6</td>
</tr>
<tr>
<td>Outcome 10 days after stroke, %</td>
<td>1.3</td>
<td>6.8</td>
</tr>
<tr>
<td>Mortality</td>
<td>1.3</td>
<td>6.8</td>
</tr>
<tr>
<td>Institutional care</td>
<td>2.6</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Telemedicine for Stroke

<table>
<thead>
<tr>
<th></th>
<th>RVE</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>77</td>
<td>74</td>
</tr>
<tr>
<td>Time for consul. (min)</td>
<td>49.8</td>
<td>27.2</td>
</tr>
<tr>
<td>Length of stay, days</td>
<td>11.4</td>
<td>12.3</td>
</tr>
<tr>
<td>Admission to stroke ward, % of pts.</td>
<td>59.7</td>
<td>45.9</td>
</tr>
<tr>
<td>Transfer to stroke center, % of pts.</td>
<td>9.1</td>
<td>14.9</td>
</tr>
<tr>
<td>Diagnosis corrected, % of pts.</td>
<td>7.1</td>
<td>17.6</td>
</tr>
<tr>
<td>Outcome 10 days after stroke, %</td>
<td>1.3</td>
<td>6.8</td>
</tr>
<tr>
<td>Mortality</td>
<td>1.3</td>
<td>6.8</td>
</tr>
<tr>
<td>Institutional care</td>
<td>2.6</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Stoke Centers in Europe
- Survey of hospitals in Germany and Austria
 - 42% response rate
- 178 total hospitals
 - > 54,000 patients admitted per year
 - Average of 376 stroke patients/hospital
- 7.3% met criteria for a CSC
- 8.4% met criteria for PSC
- 48% had basic care offered
- 36% lacked basic services
Importance of a Neurocritical Care Team

- Physician expertise in NCC
- Care protocols
- Coordinated rounds
- 2381 patients
- Significant decline in mortality
- Almost 2 day decrease in LOS

Suarez et al, CCM, 2004

Impact of a Neurointensivist on Mortality

Problem: Not enough neurointensivists for 24/7 coverage

Varelas et al, CCM, 2004

Neurocritical Care Team

<table>
<thead>
<tr>
<th>Features</th>
<th>No Team, n = 796</th>
<th>Team Available, n = 703</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurosurgical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, yrs (mean ± SD)</td>
<td>67.2 ± 13.5</td>
<td>79.2 ± 13.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Length stay, days</td>
<td>76 (65-90)</td>
<td>75 (64-84)</td>
<td><0.01</td>
</tr>
<tr>
<td>Hospital length of stay, days</td>
<td>12.0 ± 8.4</td>
<td>11.8 ± 7.4</td>
<td><0.01</td>
</tr>
<tr>
<td>Neurologic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, yrs (mean ± SD)</td>
<td>61.2 ± 13.9</td>
<td>61.7 ± 15.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Length stay, days</td>
<td>80 (55-108)</td>
<td>81 (61-106)</td>
<td><0.01</td>
</tr>
<tr>
<td>Hospital length of stay, days</td>
<td>12.0 ± 8.4</td>
<td>11.8 ± 7.4</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Suarez et al, CCM 2004

Care at a CSC vs General Hospital Finnish Experience

<table>
<thead>
<tr>
<th>Features</th>
<th>CSC (n=405)</th>
<th>PSC (n=1748)</th>
<th>GH (n=2981)</th>
<th>Total (n=6149)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of stay</td>
<td>7 (6-10)</td>
<td>7 (6-10)</td>
<td>7 (6-10)</td>
<td>7 (6-10)</td>
</tr>
<tr>
<td>Door to needle</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Onset to TPA</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Protocol Dev.</td>
<td>10.2%</td>
<td>10.2%</td>
<td>10.2%</td>
<td>10.2%</td>
</tr>
<tr>
<td>Sx ICH</td>
<td>4.7%</td>
<td>4.7%</td>
<td>4.7%</td>
<td>4.7%</td>
</tr>
<tr>
<td>Neuro improve</td>
<td>59%</td>
<td>59%</td>
<td>59%</td>
<td>59%</td>
</tr>
</tbody>
</table>

Meretoja et al, Stroke 2010

Outcomes at a CSC: Finland Study

<table>
<thead>
<tr>
<th>Table 4. Outcome of Finnish Patients With Ischemic Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted outcome, no. (%)</td>
</tr>
<tr>
<td>Case-fatality by 1 year</td>
</tr>
<tr>
<td>Institutional care by 1 year</td>
</tr>
<tr>
<td>Home at 1 year</td>
</tr>
<tr>
<td>Outcome adjusted for patient demographics, OR (95% CI)</td>
</tr>
<tr>
<td>Case-fatality by 1 year</td>
</tr>
<tr>
<td>Institutional care by 1 year</td>
</tr>
<tr>
<td>Home at 1 year</td>
</tr>
</tbody>
</table>

Meretoja et al, Stroke 2010

Outcomes at a CSC vs Community Hospital

<table>
<thead>
<tr>
<th></th>
<th>CSC</th>
<th>Community</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuro exam</td>
<td>69.5%</td>
<td>105%</td>
<td><0.001</td>
</tr>
<tr>
<td>Door to Needle</td>
<td>60</td>
<td>54</td>
<td>p = 0.1</td>
</tr>
<tr>
<td>Onset to TPA</td>
<td>135</td>
<td>165</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>Protocol Dev.</td>
<td>10.2%</td>
<td>6.7%</td>
<td>NS</td>
</tr>
<tr>
<td>Sx ICH</td>
<td>4.7%</td>
<td>14%</td>
<td>p = 0.04</td>
</tr>
<tr>
<td>Neuro Improve</td>
<td>59%</td>
<td>37%</td>
<td>p = 0.014</td>
</tr>
</tbody>
</table>

Perez de la Ossa, J Neurol 2009
Outcomes and Admission to a CSC

Table 4 Predictors of good outcome at 90 days: logistic regression analysis

<table>
<thead>
<tr>
<th>Predictor</th>
<th>OR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIHSS at baseline</td>
<td>0.86 [0.80-0.92], p < 0.001</td>
<td></td>
</tr>
<tr>
<td>Prehospital Glasgow</td>
<td>0.99 [0.98-1.00], p = 0.04</td>
<td></td>
</tr>
<tr>
<td>Clinical history of atrial fibrillation</td>
<td>1.60 [0.69-3.66], p = 0.26</td>
<td></td>
</tr>
<tr>
<td>Direct admission to the CSC (vs. initial attention at an unspecialized hospital)</td>
<td>2.48 [1.04-5.88], p = 0.03</td>
<td></td>
</tr>
</tbody>
</table>

Medical Director
- Vascular neurology, critical care, vascular neurosurgery
- Must be available 24/7
- Reachable by phone within 20 min; in house within 45 minutes

Neuro-interventionalists available 24/7
- One person cannot cover multiple hospitals (if far apart)
- Expertise in critical care and neurology staff in the ICU

Neurosurgeon available 24/7
- Must be in house within 30 minutes

Diagnostic radiologist available 24/7

Certified radiology technologist available 24/7
- Includes technologists to assist with MRI and cerebral angiography

CSC Requirements for Personnel

- RNs with expertise in stroke nursing care
 - Assessment using scales (NIHSS)
 - Critical care skills for NICU nurses
 - Post-TPA; treatments for elevated ICP; post-surgery, etc.
 - Nursing care related to IR and NSGY are key!!

- APNs with advanced nursing skills for NICU care

- Nurse case managers and social workers with expertise related to:
 - Acute stroke care
 - Care coordination
 - Post-stroke care (including rehabilitation)
 - Community resources

APNs with advanced nursing skills for NICU care

Nurse case managers and social workers with expertise related to:
- Acute stroke care
- Care coordination
- Post-stroke care (including rehabilitation)
- Community resources

Proposed CSC Requirements for Procedures

- Comprehensive Neuro-imaging
 - MRI, MRA, CTA, catheter angiography, Doppler, TCD, TTE, TEE
- Most elements must be available 24/7
- CSC must be able to perform the following procedures:
 - CEA
 - Carotid stenting
 - Endovascular coiling of aneurysms

Procedure Volumes

- Volumes for SAH, aneurysm coiling and clipping are likely to go up:
 - At least 10 aneurysms Rx with clipping
 - At least 20 aneurysms Rx with coiling/endovascular
 - At least 35 aneurysmal SAH patients cared for each year
- At least 10 endovascular procedures for acute ischemic stroke/yr* (controversial at present)

* These numbers have not been approved by TJC at present
Possible CSC Performance Metrics

- Rates of procedural complications (stroke, death)
 - CEA, CAS 30 day stroke/death rates
- Performance of stroke severity scales
 - NIHSS, Hunt and Hess, ICH score
- Time for beginning anticoagulation reversal in ICH
 - FFP, PCC, other agents
- 30 day modified Rankin
 - will not be severity adjusted
- Rates of cerebral bleeding after TPA, endovascular Rx
 - 36 hour time window, blood on head CT
- Nimodipine for SAH
 - Rx initiated within 24 hours
- Door to groin times for endovascular therapies

Monitoring for Peri-Procedure Complications

- 30 day stroke and death rates for
 - CEA (symptomatic and asymptomatic patients)
 - Carotid artery stenting (symptomatic and asymptomatic patients)
- Strokes rates for diagnostic cerebral angiogram
- Infection rates for EVDs

Other Functions of a CSC

- Act as the "Hub" hospital to coordinate:
 - Emergent communications (telemedicine, telestroke, teleradiology, robots)
 - Emergent transfers (helicopter, ambulances)
- Consultations, assistance, advice
- Risk factors, calling 911, etc.
- Act as a resource hospital or leader for various activities:
 - Research programs and studies
 - Educational programs for professional staff and lay public
- Act as a partner and advocate for:
 - Local and regional resources (money, ambulances, etc.)
 - Regional and state regulatory and legislative initiatives

Certification of CSCs

- Four organizations (JC, HFAP, DNV, others) plus some states are now involved in CSC certification
- Currently about 60-70 hospitals have been visited by the JC, of which about 40 are certified
- The JC site visit is very challenging and comprehensive
 - 2 site visitors
 - 2 day visit
 - Very in-depth
- Self-certification is not optimal
 - Inaccurate assessments
 - Lack the rigor of an independent review

Research at a CSC

- A CSC must be involved in at least one research project
- This is based on numerous studies showing that participation in clinical research improves overall outcomes
 - Research project must be patient oriented
 - Project must require IRB approval
 - Routine databases will not count as ‘research’
 - This is a new requirement

Potential Challenges Becoming a CSC

1. The major care elements must all be available on a 24/7 basis
 - Some hospitals that think of themselves as a CSC do not do this
 - Unclear if some hospitals can meet this requirement
2. EMS diversion or triage to CSCs may be a challenge
 - Cannot easily determine in ambulance type of stroke
 - May be able to assess stroke severity
3. Financial issues
 - Some procedures done at a CSC may not be well reimbursed in the future; bundling of fees
 - Unclear what the costs of CSC certification will be
 - These issues may be overcome by increased marketing, patient volume, and procedures
Conclusions

- A Comprehensive Stroke Center will form the ‘HUB’ of any Stroke System of Care
- The CSC will provide comprehensive services for the most complicated stroke patients
- There are many important personnel and programmatic elements for a CSC
- A CSC must meet several unique performance metrics
- It is hoped that the growth and success of CSCs will mirror that of PSCs
- CSC certification began in 2012 and continues
- May have a total of 150-200 CSCs