Small Aneurysms: Determining When to Treat

Society of Vascular and Interventional Neurology
7th Annual Meeting
November 8, 2014
Hollywood, FL

Marc A. Lazzaro, MD
Assistant Professor of Neurology and Neurosurgery
Vascular Neurology and Neurointervention
Froedtert and Medical College of Wisconsin
Disclosures

• No financial interest in any product or manufacturer mentioned herein.
Important questions

- Do small aneurysms rupture?
- Risk factors for rupture?
- Can small aneurysms be treated with acceptable risk?
Talk aims

- Define small aneurysms
- Review historical perspectives and trends in management
- Discuss rupture rates
- Present risk factors
- Describe treatment feasibility and safety
3 mm
5 mm
What is a “Small Aneurysm”?

- Size is somewhat arbitrarily assigned by investigators to stratify data.
- Inconsistently defined in the literature.
- Overall, defined as <10 mm in maximum diameter.
- Reports range from 5 to 11 mm in max diameter.
- “Very small” are often < 3 mm in max diameter.
Historical perspective

- What has influenced current trends?
- Guidelines?
- Landmark studies that have shaped perspective?
Japan Neurosurgical Society, 1996

- Japan Neurosurgical Society conducted a survey in 1996
- 87% of centers in Japan agreed that incidentally discovered unruptured aneurysms < 5 mm in diameter should be followed without treatment
Recommendations for the Management of Patients with Unruptured Intracranial Aneurysms

“In consideration of the apparent low risk of hemorrhage from incidental small (<10 mm) aneurysms in patients without previous SAH, treatment rather than observation cannot be generally advocated. However, special considerations for treatment…”

Circulation. 2000;102:2300
Guglielmi detachable coils, 1997

- UCLA group published early GDC experience in ruptured intracranial aneurysms
- FDA approved study of GDC system in ruptured aneurysms; 8 centers, 403 patients; 1990-95.
- 61% were small aneurysms (4-10 mm)
- 9/11 aneurysm perforations occurred in small aneurysms
- Perforation precipitated death in 6 patients

Vinuela F et al. J Neurosurg 1997;87:475
Small aneurysms can rupture

1983, Kassell NF et al.
- 13% of aneurysms were less than 5 mm in diameter

2002, ISAT (International Subarachnoid Aneurysm Trial)
- The majority of aneurysms (92%) were small, < 11 mm
- About half of the small aneurysms were ≤ 5 mm

ISAT Lancet 2002; 360:1267
Small aneurysm rupture rates

- What do prospective studies tell us about small aneurysm rupture rates?
Prospective Unruptured aneurysm trials

- Helsinki (Juvela, 2000)
 - 181 patients
 - 20 year median follow up
 - Overall annual rupture rate 1.3%

- ISUIA (2003)
 - 5-year cumulative risk of rupture of anterior circulation aneurysms <7 mm was 0%

Juvela S et al. 2008;108:1052
ISUIA Lancet 2003;362:103
Prospective Unruptured aneurysm trials

- SUAVe Study (2010)
 - Japan
 - Unruptured aneurysms < 5 mm
 - 448 aneurysms followed for 41 months
 - Annual rupture rate = 0.54%

- UCAS Japan (2012)
 - 6697 aneurysms
 - Inclusion criteria: 3 mm or larger
 - Overall annual rupture rate 0.95%
 - Size 7 mm or larger had significantly increased risk of rupture

Sonobe M et al. Stroke. 2010;41:1969
UCAS NEJM 2012;366:2474
Prospective natural history data suggest low rupture rates for small aneurysms. Procedural risk may be higher in treatment of small aneurysms. Specifically regarding perforation, it supports a conservative position. Yet, a substantial proportion of aneurysms in ruptured series are small.
Increasing treatment

- Despite the low rupture rates for incidentally identified aneurysms suggested by reports, treatment has been increasing.
- Between 1997 - 2006
- 75% increase in hospitalizations associated with unruptured aneurysms

(Nationwide Inpatient Sample)

Can we identify risk factors to better select patients?
Risk factors for aneurysm rupture

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>All</td>
<td>All</td>
<td>All</td>
<td>< 5 mm</td>
<td>< 7 mm</td>
<td>< 5 mm</td>
<td>< 7 mm</td>
</tr>
<tr>
<td>N</td>
<td>1692</td>
<td>6,697</td>
<td>181</td>
<td>448</td>
<td>100</td>
<td>854</td>
<td>384</td>
</tr>
<tr>
<td>Years</td>
<td>3 years</td>
<td>20 yr median</td>
<td>3 years</td>
<td>Retrospective</td>
<td></td>
<td></td>
<td>4 years</td>
</tr>
<tr>
<td>Size</td>
<td>Size > 7 mm</td>
<td>Larger size</td>
<td>Size >/= 4 mm</td>
<td>Younger age</td>
<td>Larger size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Acom, Pcom location</td>
<td>Age</td>
<td>Age < 50</td>
<td>Posterior location</td>
<td>Size ratio</td>
<td>Age < 50</td>
<td></td>
</tr>
<tr>
<td>Prior SAH</td>
<td>Daughter sac</td>
<td>Smoking</td>
<td>HTN</td>
<td>HTN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are treatment risks in small aneurysms known?
Small aneurysm treatment risk

Oishi H et al. AJNR 2012
- Endovascular treatment of 500 small UIAs
 - < 10 mm
 - Complications 7.6%
 - Permanent morbidity and mortality, 0.8% and 0.2%.
 - Retreatment required in 10%
 - No SAH in 35 month follow up

Loumiotis I et al. JNS 2011
- Endovascular and surgical tx of 82 patients
 - <10 mm
 - Morbidity and mortality, 1.5% and 1.5%.

Oishi H et al. AJNR 2012;33:958
Loumiotis I et al. JNS 2011;31:E4
Treatment risk in “very small” aneurysms

Brinjikji et al 2010

- Meta-analysis
- Endovascular treatment of “Very Small” aneurysms, 3 mm or smaller
- Feasible and effective in >90%
- Higher periprocedural risk than in larger aneurysms
 - 7.3% periprocedural morbidity and mortality
 - Intraprocedure rupture rate
 - Ruptured aneurysms: 10.7 %
 - Unruptured aneurysms: 5 %
Size perspective

<1% annual rupture risk
< 7 mm

>1% annual rupture risk
7-20 mm

10 – 20% annual rupture risk
> 20 mm
Size perspective

- < 1% annual rupture risk
 - < 7 mm
 - > 1% annual rupture risk
 - 7-20 mm
 - 10 – 20% annual rupture risk
 - > 20 mm

Likely offer Treatment
Small UIA management

< 1% annual rupture risk

< 7 mm

Likely requires individualized management considering risk factors/decision modifiers

<table>
<thead>
<tr>
<th>Decision modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
</tr>
<tr>
<td>Morphology</td>
</tr>
<tr>
<td>Location</td>
</tr>
<tr>
<td>Young age</td>
</tr>
<tr>
<td>Smoking</td>
</tr>
<tr>
<td>Excessive alcohol use</td>
</tr>
<tr>
<td>HTN</td>
</tr>
<tr>
<td>H/o SAH</td>
</tr>
<tr>
<td>Female sex</td>
</tr>
<tr>
<td>Family history</td>
</tr>
<tr>
<td>Psychological stress</td>
</tr>
<tr>
<td>Comorbidities and life expectancy</td>
</tr>
</tbody>
</table>
Small UIA management

0 – 1% annual rupture risk

< 7 mm

≤3 mm

Observation.
Requires compelling reason for treatment
• Multiple decision modifiers needed
• Favorable anatomy for treatment

3-7 mm

Observation versus treatment, individualized management with decision modifiers
2.5 mm Conical shape, HTN, Smoking, female
5 mm Irregular, HTN, Smoking
3 mm Daughter sac, HTN, Smoking, H/o prior SAH
5 mm Bilobed, HTN, Smoking
6 mm, 2 mm Bilobed, HTN, female
Summary

- Small aneurysms are not benign
- Small aneurysm treatment is feasible
- Safety and efficacy likely to increase with techniques and technology
- Size is only the starting point of decision making
- Decreasing aneurysm size requires increasingly careful consideration of decision modifiers