Experience with Detachable Tip Microcatheter

Johanna T. Fifi, M.D.
Assistant Professor of Neurology, Neurosurgery, and Radiology
Icahn School of Medicine at Mount Sinai

November 8th, 2014
Disclosures

- Consultant - Microvention
Team

- Alex Berenstein, MD
- David Altschul, MD
- Srinivasan Paramasivam, MD
- Santiago Ortega-Gutierrez, MD
Detachable tip microcatheter

- Apollo™ onyx delivery detachable tip microcatheter
 - Single lumen end hole microcatheter
 - 0.013 inches
 - Detachment lengths - 1.5 cm and 3 cm
Detachment of the microcatheter

- The required detachment force is about 33 grams. It is less than $\frac{1}{3}$rd the force required to break the next weakest bond in the catheter.

- Gentle and continuous traction – Mechanical detachment
 - Reduce the slack in the system
 - Initial traction related stretching of the microcatheter.
 - Detachment of the microcatheter / release of the microcatheter from the embolic cast.
Reflux

Reflux Tolerance

✓ Reflux is acceptable on distal tip.
✓ Leave a gap of at least **1.25mm** between the Onyx™ LES reflux and the proximal marker band. Excessive reflux may result in difficult catheter removal.

✗ Do not reflux past the proximal marker band!

Source: IFU P/N 70556-001 05/2013
Why do we need a detachable tip micro catheter?
Onyx Embolization

- Proximal plug around the catheter is usual during onyx injection.
- The catheter needs to be removed from the embolic cast at the end of embolization.
- Excessive reflux can lead to:
 - Retained microcatheter
 - Aggressive attempts at removal can lead to complications like vessel rupture and hemorrhage.
- Incidence Unknown.
nBCA embolization

- Goals:
 - Good penetration.
 - Prevention of proximal reflux - prevent catheter retention and non-target embolization.
 - Flow and operator dependent – Fear of catheter entrapment.
 - Prolonged contact with polymerized nBCA lead to retained catheter or vessel injury.
 - Incidence unknown
Our experience

- Between March 2013 and March 2014, detachable tip microcatheters were used in 16 patients under FDA approval for compassionate use.

- 39 catheterizations in 19 procedures.

- The patients were aged between 3 months and 18 years.
Our experience

- Since April 2014, we have been using it under physician sponsored IDE.

- In 7 patients, 13 catheterizations were performed.

- In total 52 catheterizations and embolizations performed.

- In most instances the 1.5 cm detachable tip microcatheter was used.

- Since June 2014, the Apollo has been FDA approved.
Our initial experience

- Embolic agent:
 - Onyx was used 18 times and
 - nBCA was used 33 times.

- Catheter detachment rate:
 - Three times with onyx (17%) and
 - 18 times with nBCA use (55%).

- Inadvertent and premature detachment:
 - One
<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Diagnosis</th>
<th>Injections</th>
<th>Tip</th>
<th>Length</th>
<th>Vessel</th>
<th>Embolized</th>
<th>Material</th>
<th>Amt</th>
<th>Tip Detached</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 yr</td>
<td>F</td>
<td>Left Cerebellar AVM</td>
<td>Catheter 1</td>
<td>1.5cm</td>
<td>SCV</td>
<td></td>
<td></td>
<td>Onyx-18</td>
<td>1.2mL</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catheter 2</td>
<td>1.5cm</td>
<td>AICA</td>
<td></td>
<td></td>
<td>Onyx-18</td>
<td>1.0mL</td>
<td>No</td>
</tr>
<tr>
<td>3 mo</td>
<td>F</td>
<td>Vein of Galen Malformation</td>
<td>Catheter 1</td>
<td>1.5cm</td>
<td>PCA</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>0.3mL</td>
<td>No</td>
</tr>
<tr>
<td>5 mo</td>
<td>F</td>
<td>Vein of Galen Malformation</td>
<td>Catheter 1</td>
<td>1.5cm</td>
<td>Pericallosal</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>0.4mL</td>
<td>Yes</td>
</tr>
<tr>
<td>11 yr</td>
<td>M</td>
<td>Midbrain AVM</td>
<td>Catheter 1</td>
<td>1.5cm</td>
<td>MCA</td>
<td></td>
<td></td>
<td>Onyx-18</td>
<td>0.9mL</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catheter 2</td>
<td>1.5cm</td>
<td>MCA</td>
<td></td>
<td></td>
<td>Onyx-18</td>
<td>0.6mL</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catheter 3</td>
<td>1.5cm</td>
<td>ACA</td>
<td></td>
<td></td>
<td>Onyx-18</td>
<td>0.5mL</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catheter 4</td>
<td>1.5cm</td>
<td>ACA</td>
<td></td>
<td></td>
<td>Onyx-18</td>
<td>0.8mL</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Procedure #2</td>
<td>Catheter 5</td>
<td>1.5cm</td>
<td>SCA</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>0.3mL</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catheter 6</td>
<td>1.5cm</td>
<td>SCA</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>0.1mL</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catheter 7</td>
<td>1.5cm</td>
<td>PCA</td>
<td></td>
<td></td>
<td>Onyx-18</td>
<td>1.7mL</td>
<td>No</td>
</tr>
<tr>
<td>1.5 yr</td>
<td>F</td>
<td>Right parietal pial AVF</td>
<td>Catheter 1</td>
<td>3.0cm</td>
<td>ACA</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>1.2mL</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catheter 2</td>
<td>3.0cm</td>
<td>MCA</td>
<td></td>
<td></td>
<td>Onyx-34</td>
<td>1.6mL</td>
<td>No</td>
</tr>
<tr>
<td>6 mo</td>
<td>M</td>
<td>Left basal ganglia AVM</td>
<td>Catheter 1</td>
<td>1.5cm</td>
<td>PCA</td>
<td></td>
<td></td>
<td>Onyx-18</td>
<td>0.4mL</td>
<td>No</td>
</tr>
<tr>
<td>4 mo</td>
<td>M</td>
<td>Posterior Fossa pial AVF</td>
<td>Catheter 1</td>
<td>1.5cm</td>
<td>PICA</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>0.4mL</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catheter 2</td>
<td>1.5cm</td>
<td>PICA</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>0.4mL</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Procedure #2</td>
<td>Catheter 3</td>
<td>1.5cm</td>
<td>PICA</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>0.7mL</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Procedure #3</td>
<td>Catheter 4</td>
<td>1.5cm</td>
<td>PICA</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>1.6mL</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catheter 5</td>
<td>1.5cm</td>
<td>PICA</td>
<td></td>
<td></td>
<td>Onyx-18</td>
<td>2.0mL</td>
<td>No</td>
</tr>
<tr>
<td>18 yr</td>
<td>M</td>
<td>Thalamic AVM</td>
<td>Catheter 1</td>
<td>1.5cm</td>
<td>PCA</td>
<td></td>
<td></td>
<td>Onyx-18</td>
<td>1.2mL</td>
<td>No</td>
</tr>
<tr>
<td>3 mo</td>
<td>M</td>
<td>Vein of Galen Malformation</td>
<td>Catheter 1</td>
<td>1.5cm</td>
<td>PCA</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>1.3mL</td>
<td>No</td>
</tr>
<tr>
<td>6 mo</td>
<td>M</td>
<td>Vein of Galen Malformation</td>
<td>Catheter 1</td>
<td>1.5cm</td>
<td>PCA</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>0.4mL</td>
<td>No</td>
</tr>
<tr>
<td>7 mo</td>
<td>M</td>
<td>Vein of Galen Malformation</td>
<td>Catheter 1</td>
<td>1.5cm</td>
<td>PCA</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>0.6mL</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catheter 2</td>
<td>1.5cm</td>
<td>PCA</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>0.6mL</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catheter 3</td>
<td>1.5cm</td>
<td>PCA</td>
<td></td>
<td></td>
<td>n-BCA</td>
<td>0.5mL</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Vertebral Pial Fistula
High concentration nBCA
Detached Tip
Right Parietal complex Pial AVF – previously treated by multiple NBCA embolizations.
End of Second embolization with Onyx – Right Middle Cerebral Artery

End of second embolization by Onyx injection with Apollo microcatheter – Right Middle Cerebral Artery.
Right Parietal complex Pial AVF – completely treated following the use of Apollo detachable tip Microcatheter. The Glue and Onyx cast from previous embolizations is visible.
Advantages

- Trackability and Navigability – As good as or better than any wire guided microcatheter.
- Used through a 4 Fr guiding catheter for nBCA and 5 Fr guiding catheter for Onyx injections.
Advantages

- Onxy injection - reflux limit is known.
- nBCA injection –
 - Controlled injection of high concentration nBCA (80 – 90% for high flow fistulas).
 - Permissible reflux
 - Intermittent injections to allow better control of the glue cast.
- Aggressive injection, better penetrability.
Advantages

- Controlled catheter retrieval under fluoroscopy guidance.
- Less pressure used for catheter removal.
- No incidence of vessel rupture or hemorrhage.
Disadvantages

- The detachment zone is relatively stiff compared with the rest of the microcatheter.
Beware of normal branches arising from deattachable segment.
• Inadvertent detachment of the tip.
Conclusion

- Results in more penetration especially in high flow fistulas using nBCA.
- Catheter retrieval is more controlled and less traumatic.
- Our initial experience is encouraging and it is an useful tool to have.
- Multicenter experience is essential before ascertaining its safety and efficacy.
Thank you